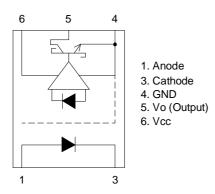
Property of Lite-on Only

LTV-M601

High Speed 10MBit/s TTL Compatible Optocouplers


Description

The LTV-M601 consists of a high efficient AlGaAs Light Emitting Diode and a high speed optical detector. This design provides excellent AC and DC isolation between the input and output sides of the Optocoupler. The output of the optical detector features an open collector Schottky clamped transistor. The enable function allows the optical detector to be strobed. The internal shield ensures high common mode transient immunity. A guaranteed common mode transient immunity is up to 15,000V/µs.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$.

Functional Diagram

Pin No. and Internal connection diagram

Truth Table (Positive Logic)

LED	OUT
ON	L
OFF	Н

A 0.1µF bypass Capacitor must be connected between Pin4 and Pin6

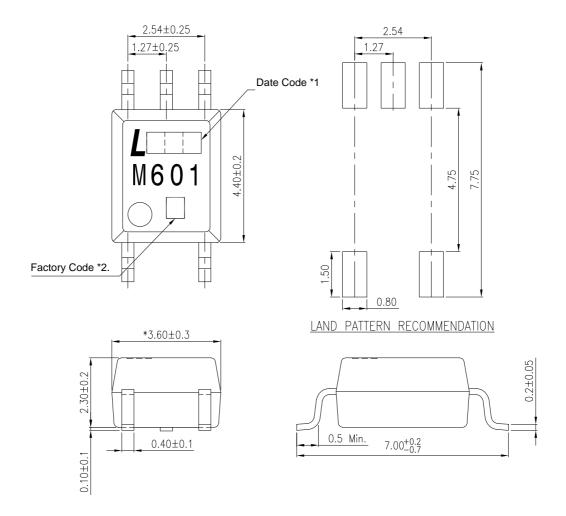
Features

- SOP5 package
- High speed 10MBd typical
- Guaranteed AC and DC performance over temperature -40°C ~ +85°C.
- Internal Shield for High Common Mode Rejection (CMR) LTV-M601: 10KV/us at V_{CM} = 1000V
- LSTTL/TTL Compatible.
- Strobable output.
- Safety approval
 UL/ cUL 1577, Cert. No.E113898.
 3750 Vrms/1 min

VDE DIN EN60747-5-5, Cert. No. 138213

 $V_{IORM} = 567 V_{peak}$

Application

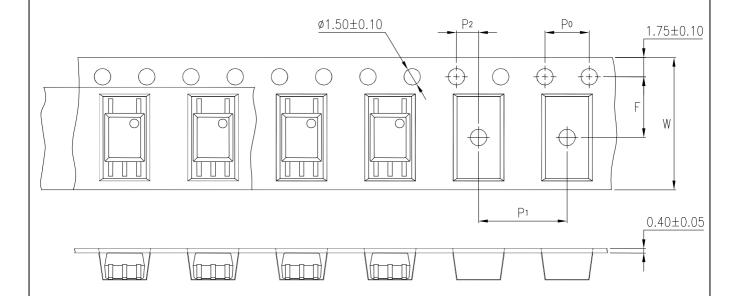

- Isolation in line receivers
- Ground loop elimination
- Feedback Element in Switching Mode Power Supplier
- High Speed Logic Ground Isolation TTL/TTL, TTL/CMOS, TTL/LSTTL
- Pulse transformer replacement
- Power transistor isolation in motor drives
- Interface between Microprocessor system, computer and their peripheral

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013) Page: 1 of 13

Property of Lite-on Only

Package Dimensions

5-pin SOP Package (LTV-M601)


- *1. The first digit is year date code, second and third digit is work week
- *2. Factory identification mark (W :China-CZ) Dimensions are in Millimeters and (Inches).

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013) Page: 2 of 13

Property of Lite-on Only

Taping Dimensions

LTV-M601

Description	Symbol	Dimensions in millimeters (inches)
Tape wide	W	12 ± 0.3 (.63)
Pitch of sprocket holes	P0	4 ± 0.1 (.15)
Distance of compartment	F P2	5.5 ± 0.1 (.295) 2 ± 0.1 (.079)
Distance of compartment to compartment	P1	8 ± 0.1 (.472)

Quantity Per Reel

Package Type	LTV-M601
Quantities(pcs)	3000

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013)

Page: 3 of 13

Property of Lite-on Only

Absolute Maximum Ratings*1

Parameter	Symbol	Min	Max	Units	Note
Storage Temperature	T _{ST}	-40	125	°C	
Operating Temperature	T _A	-40	85	°C	
Isolation Voltage	V _{ISO}	3750		V_{RMS}	
Supply Voltage	V _{CC}		7	V	
Lead Solder Temperature * 2			260	°C	2
Input					
Average Forward Input Current	I _F		50	mA	
Reverse Input Voltage	V _R		5	V	
Input Power Dissipation	Pı		40	mW	
Output					
Output Collector Current	Io		50	mA	
Output Collector Voltage	Vo		7	V	
Output Collector Power Dissipation	Po		85	mW	

^{1.}Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

2.260°C for 10 seconds. Refer to Lead Free Reflow Profile.

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013) Page: 4 of 13

Property of Lite-on Only

Electrical Specifications

Parameters	Test Condition	Symbol	Min	Тур	Max	Units	
Input	Input						
Input Forward Voltage	I _F = 10mA	V_{F}		1.38	1.80	V	
Input Forward Voltage Temperature Coefficient	I _F = 10mA	$\Delta V_F / \Delta T$		-1.6		mV/ ^o C	
Input Reverse Voltage	I _R = 10μA	BV_R	5			V	
Input Threshold Current	$V_{CC} = 5.5V, V_{O} = 0.6V$ I_{OL} (sinking) = 13mA	I _{TH}		1.8 ⁽¹⁾	3	mA	
Input Capacitance	$f = 1MHz, V_F = 0V$	C_{IN}		34		pF	
Detector							
High Level Supply Current	$V_{CC} = 5.5V, I_F = 0mA$	I _{CCH}		6	10	mA	
Low Level Supply Current	$V_{CC} = 5.5V, I_F = 10mA$	I _{CCL}		8	13	mA	
High Level Output Current	$V_{CC} = 5.5V, V_O = 5.5V,$ $I_F = 250\mu A$	I _{OH}		2	100	μΑ	
Low Level Output Voltage	$V_{CC} = 5.5V$, $I_F = 5mA$, I_{OL} (sinking) = 13mA	V _{OL}		0.4	0.60	V	

Specified over recommended temperature ($T_A = -40^{\circ}C$ to $+85^{\circ}C$) unless otherwise specified. Typical values applies to $V_{CC} = 5V$, $T_A = 25^{\circ}C$. See note 1.

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013)

BNS-OD-C131/A4

Property of Lite-on Only

Switching Specifications

Parameter	Test Condition	Symbol	Min	Тур	Max	Units
Propagation Delay Time to Low Output Level	$T_A=25^{\circ}C$ ($R_L=350\Omega$, $C_L=15pF$)	t _{PHL}		30	75	
Propagation Delay Time to High Output Level		t _{PLH}		40	75	
Pulse Width Distortion		t _{PLH} - t _{PHL}		10	35	20
Propagation Delay Skew		t _{PSK}			40	ns
Output Rise Time (10 to 90%)		t _r		21		
Output Fall Time (90 to 10%)		t _f		7		
Common Mode Transient Immunity at High Output Level	$V_{CM} = 1000V,$ $R_L = 350\Omega, IF = 0mA$ $T_A = 25^{\circ}C$	CMH	10			K)//ua
Common Mode Transient Immunity at Low Output Level	$V_{CM} = 1000V,$ $R_L = 350\Omega, IF=10.0mA$ $T_A = 25^{\circ}C$	CML	10			KV/µs

Specified over recommended temperature (T_A = -40°C to +85°C), V_{CC} = 5V, I_F = 7.5mA unless otherwise specified. Typical values applies to V_{CC} = 5V, T_A = 25°C.

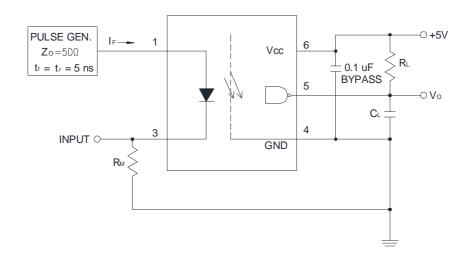
Part No.: LTV-M601 (Rev.-A, Mar 13, 2013) Page: 6 of 13

Property of Lite-on Only

Isolation Characteristics

Parameter	Test Condition	Symbol	Min	Тур	Max	Units
Input-Output Insulation Leakage Current	45% RH, t = 5s, V _{I-O} = 3kV DC, T _A = 25°C	I _{I-O}			1.0	μA
Withstand Insulation Test Voltage	RH \leq 50%, t = 1min, T _A = 25°C	V _{ISO}	3750			V
Input-Output Resistance	V _{I-O} = 500V DC	R _{I-O}		10 ¹²		Ω
Input-Output Capacitance	f = 1MHz, T _A = 25°C	C _{I-O}		1.0		pF

^{*}All Typical at T_A =25 °C


Notes

- 1. A $0.1\mu F$ or bigger bypass capacitor for V_{CC} is needed as shown in Fig.1
- 2. Peaking driving circuit may be used to speed up the LED. The peak drive current of LED may go up to 50mA and maximum pulse width 50ns, as long as average current doesn't exceed 20mA.
- 3. t_{PLH} (propagation delay) is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
- 4. t_{PHL} (propagation delay) is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
- 5. The t_{ELH} enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge of the output pulse.
- 6. The t_{EHL} enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge of the output pulse.
- 7. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VO > 2.0 V).
- 8. CM_L is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VO < 0.8 V).
- 9. No external pull up is required for a high logic state on the enable input. If the enable pin is not used, tying it to V_{CC} .
- 10. Device is considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.
- 11. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage 3000 V rms for one second (leakage current less than 5 uA). This test is performed before the 100% production test for partial discharge

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013) Page: 7 of 13

Property of Lite-on Only

Switching Time Test Circuit

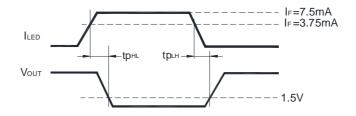
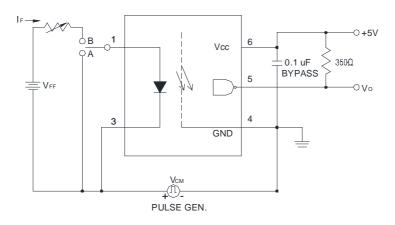



Figure 1: Single Channel Test Circuit for t_{PHL} and t_{PLH}

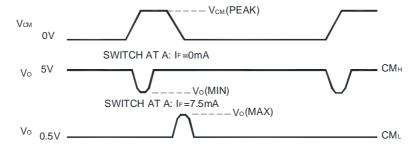
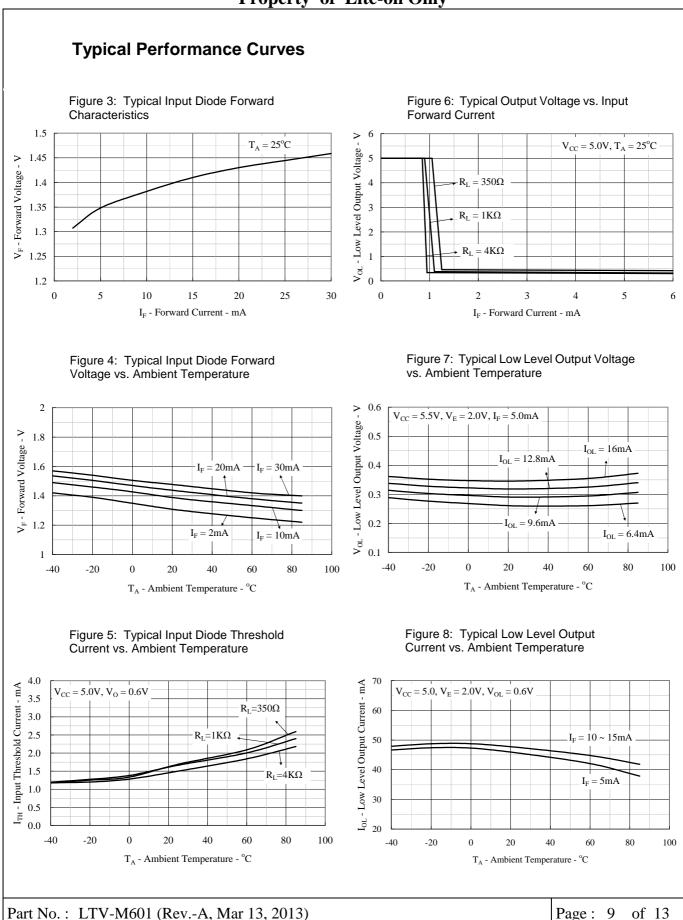



Figure 2: Single Channel Test Circuit for Common Mode Transient Immunity

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013) Page: 8 of 13

Property of Lite-on Only

BNS-OD-C131/A4

Property of Lite-on Only

Typical Performance Curves

Figure 9: Typical Enable Propagation Delay vs. Ambient Temperature

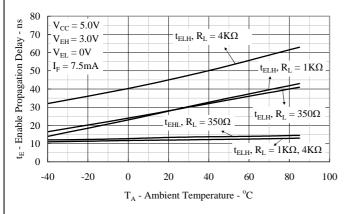


Figure 12: Typical Propagation Delay vs. Input **Forward Current**

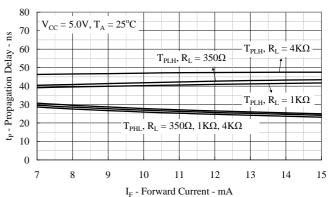
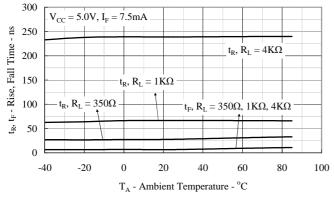



Figure 10: Typical Rise and Fall Time vs.

Ambient Temperature

Figure 13: Typical Pulse Width Distortion vs. Input Forward Current

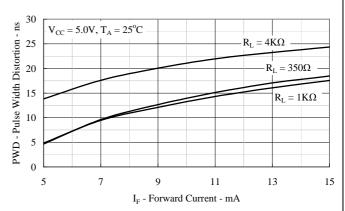
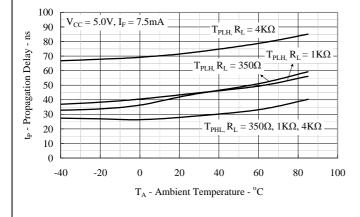
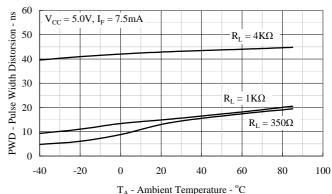
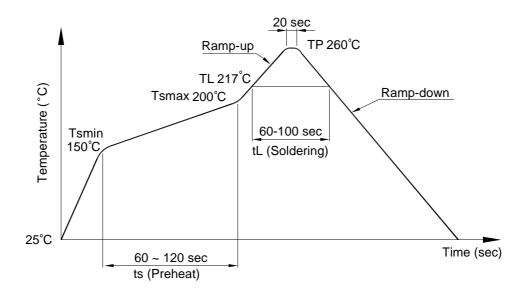




Figure 11: Typical Propagation Delay vs. **Ambient**

Figure 14: Typical Pulse Width Distortion vs. **Ambient Temperature**

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013)


Page: 10 of 13

Property of Lite-on Only

Temperature Profile Of Soldering Reflow

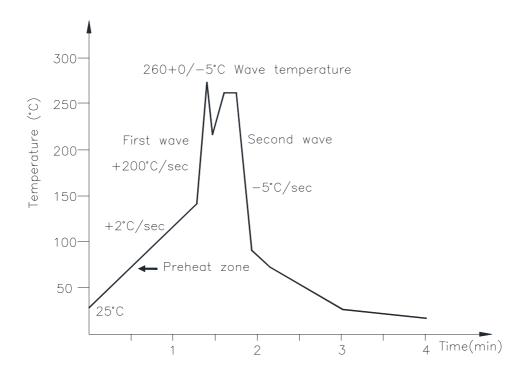
(1) IR Reflow soldering (JEDEC-STD-020C compliant) One time soldering reflow is recommended within the condition of temperature and time profile shown below.

Profile item	Conditions
Preheat - Temperature Min (T _{Smin}) - Temperature Max (T _{Smax}) - Time (min to max) (ts)	150°C 200°C 90±30 sec
Soldering zone	
- Temperature (T _L)	217°C
- Time (t _L)	60 ~ 100sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013) Page: 11 of 13

Property of Lite-on Only

Temperature Profile Of Soldering Reflow


(2) Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C Preheat time: 30 to 80 sec.

(3) Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

Part No.: LTV-M601 (Rev.-A, Mar 13, 2013) Page: 12 of 13

Property of Lite-on Only

110pe10; 01 2100 011 0111			
Note:			
Specifications of the products displayed herein are subject to change without notice.			
The products shown in this publication are designed for the general use in electronic a office automation equipment, communications devices, audio/visual equinstrumentation and application. For equipment/devices where high reliability or safe as space applications, nuclear power control equipment, medical equipment, etc, sales representatives.	uipment, electety is required, s	trical such	
No.: LTV-M601 (RevA, Mar 13, 2013)	Page: 13	of	1

BNS-OD-C131/A4

单击下面可查看定价,库存,交付和生命周期等信息

>>Lite-On(光宝)